Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 218
Filtrar
1.
Mitochondrion ; 76: 101882, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38599302

RESUMO

Mitochondria are dynamic organelles that alter their morphological characteristics in response to functional needs. Therefore, mitochondrial morphology is an important indicator of mitochondrial function and cellular health. Reliable segmentation of mitochondrial networks in microscopy images is a crucial initial step for further quantitative evaluation of their morphology. However, 3D mitochondrial segmentation, especially in cells with complex network morphology, such as in highly polarized cells, remains challenging. To improve the quality of 3D segmentation of mitochondria in super-resolution microscopy images, we took a machine learning approach, using 3D Trainable Weka, an ImageJ plugin. We demonstrated that, compared with other commonly used methods, our approach segmented mitochondrial networks effectively, with improved accuracy in different polarized epithelial cell models, including differentiated human retinal pigment epithelial (RPE) cells. Furthermore, using several tools for quantitative analysis following segmentation, we revealed mitochondrial fragmentation in bafilomycin-treated RPE cells.

2.
Cell Death Dis ; 15(3): 183, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429301

RESUMO

Metastatic BRAFV600E colorectal cancer (CRC) carries an extremely poor prognosis and is in urgent need of effective new treatments. While the BRAFV600E inhibitor encorafenib in combination with the EGFR inhibitor cetuximab (Enc+Cet) was recently approved for this indication, overall survival is only increased by 3.6 months and objective responses are observed in only 20% of patients. We have found that a limitation of Enc+Cet treatment is the failure to efficiently induce apoptosis in BRAFV600E CRCs, despite inducing expression of the pro-apoptotic protein BIM and repressing expression of the pro-survival protein MCL-1. Here, we show that BRAFV600E CRCs express high basal levels of the pro-survival proteins MCL-1 and BCL-XL, and that combining encorafenib with a BCL-XL inhibitor significantly enhances apoptosis in BRAFV600E CRC cell lines. This effect was partially dependent on the induction of BIM, as BIM deletion markedly attenuated BRAF plus BCL-XL inhibitor-induced apoptosis. As thrombocytopenia is an established on-target toxicity of BCL-XL inhibition, we also examined the effect of combining encorafenib with the BCL-XL -targeting PROTAC DT2216, and the novel BCL-2/BCL-XL inhibitor dendrimer conjugate AZD0466. Combining encorafenib with DT2216 significantly increased apoptosis induction in vitro, while combining encorafenib with AZD0466 was well tolerated in mice and further reduced growth of BRAFV600E CRC xenografts compared to either agent alone. Collectively, these findings demonstrate that combined BRAF and BCL-XL inhibition significantly enhances apoptosis in pre-clinical models of BRAFV600E CRC and is a combination regimen worthy of clinical investigation to improve outcomes for these patients.


Assuntos
Antineoplásicos , Apoptose , Carbamatos , Neoplasias Colorretais , Inibidores de Proteínas Quinases , Proteína bcl-X , Animais , Humanos , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Proteína bcl-X/antagonistas & inibidores , Proteína bcl-X/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas B-raf/genética , Sulfonamidas/farmacologia , Sulfonamidas/uso terapêutico , Apoptose/efeitos dos fármacos
3.
Am J Physiol Gastrointest Liver Physiol ; 325(6): G508-G517, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37788331

RESUMO

High-fat (HF) diets (HFDs) and inflammation are risk factors for colon cancer; however, the underlying mechanisms remain to be fully elucidated. The transcriptional corepressor HDAC3 has recently emerged as a key regulator of intestinal epithelial responses to diet and inflammation with intestinal-specific Hdac3 deletion (Hdac3IKO) in mice increasing fatty acid oxidation genes and the rate of fatty acid oxidation in enterocytes. Hdac3IKO mice are also predisposed to experimentally induced colitis; however, whether this is driven by the intestinal metabolic reprogramming and whether this predisposes these mice to intestinal tumorigenesis is unknown. Herein, we examined the effects of intestinal-specific Hdac3 deletion on colitis-associated intestinal tumorigenesis in mice fed a standard (STD) or HFD. Hdac3IKO mice were highly prone to experimentally induced colitis, which was further enhanced by an HFD. Hdac3 deletion also accelerated intestinal tumor development, specifically when fed an HFD and most notably in the small intestine where lipid absorption is maximal. Expression of proteins involved in fatty acid metabolism and oxidation (SCD1, EHHADH) were elevated in the small intestine of Hdac3IKO mice fed an HFD, and these mice displayed increased levels of lipid peroxidation, DNA damage, and apoptosis in their villi, as well as extensive expansion of the stem cell and progenitor cell compartment. These findings reveal a novel role for Hdac3 in suppressing colitis and intestinal tumorigenesis, particularly in the context of consumption of an HFD, and reveal a potential mechanism by which HFDs may increase intestinal tumorigenesis by increasing fatty acid oxidation, DNA damage, and intestinal epithelial cell turnover.NEW & NOTEWORTHY We reveal a novel role for the transcriptional corepressor Hdac3 in suppressing colitis and intestinal tumorigenesis, particularly in the context of consumption of an HFD, and reveal a potential mechanism by which HFDs may increase intestinal tumorigenesis by increasing fatty acid oxidation, DNA damage, and intestinal epithelial cell turnover. We also identify a unique mouse model for investigating the complex interplay between diet, metabolic reprogramming, and tumor predisposition in the intestinal epithelium.


Assuntos
Colite , Neoplasias Intestinais , Animais , Camundongos , Carcinogênese/metabolismo , Proteínas Correpressoras/metabolismo , Colite/metabolismo , Dieta Hiperlipídica , Ácidos Graxos/metabolismo , Inflamação/metabolismo , Mucosa Intestinal/metabolismo , Neoplasias Intestinais/metabolismo , Camundongos Endogâmicos C57BL
4.
Sci Immunol ; 8(88): eadf2163, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37801516

RESUMO

Intraepithelial lymphocytes (IELs), including αß and γδ T cells (T-IELs), constantly survey and play a critical role in maintaining the gastrointestinal epithelium. We show that cytotoxic molecules important for defense against cancer were highly expressed by T-IELs in the small intestine. In contrast, abundance of colonic T-IELs was dependent on the microbiome and displayed higher expression of TCF-1/TCF7 and a reduced effector and cytotoxic profile, including low expression of granzymes. Targeted deletion of TCF-1 in γδ T-IELs induced a distinct effector profile and reduced colon tumor formation in mice. In addition, TCF-1 expression was significantly reduced in γδ T-IELs present in human colorectal cancers (CRCs) compared with normal healthy colon, which strongly correlated with an enhanced γδ T-IEL effector phenotype and improved patient survival. Our work identifies TCF-1 as a colon-specific T-IEL transcriptional regulator that could inform new immunotherapy strategies to treat CRC.


Assuntos
Neoplasias Colorretais , Linfócitos Intraepiteliais , Camundongos , Humanos , Animais , Linfócitos Intraepiteliais/metabolismo , Receptores de Antígenos de Linfócitos T gama-delta , Intestino Delgado , Epitélio
5.
Mater Today Bio ; 22: 100786, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37692377

RESUMO

Extracellular matrix type 0 is reported. The matrix is developed from a jellyfish collagen predating mammalian forms by over 0.5 billion years. With its ancient lineage, compositional simplicity, and resemblance to multiple collagen types, the matrix is referred to as the extracellular matrix type 0. Here we validate the matrix describing its physicochemical and biological properties and present it as a versatile, minimalist biomaterial underpinning a pipeline of commercialised products under the collective name of JellaGelTM. We describe an extensive body of evidence for folding and assembly of the matrix in comparison to mammalian matrices, such as bovine collagen, and its use to support cell growth and development in comparison to known tissue-derived products, such as Matrigel™. We apply the matrix to co-culture human astrocytes and cortical neurons derived from induced pluripotent stem cells and visualise neuron firing synchronicity with correlations indicative of a homogenous extracellular material in contrast to the performance of heterogenous commercial matrices. We prove the ability of the matrix to induce spheroid formation and support the 3D culture of human immortalised, primary, and mesenchymal stem cells. We conclude that the matrix offers an optimal solution for systemic evaluations of cell-matrix biology. It effectively combines the exploitable properties of mammalian tissue extracts or top-down matrices, such as biocompatibility, with the advantages of synthetic or bottom-up matrices, such as compositional control, while avoiding the drawbacks of the two types, such as biological and design heterogeneity, thereby providing a unique bridging capability of a stem extracellular matrix.

6.
Vision Res ; 212: 108311, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37586294

RESUMO

Usher syndrome type 1B (USH1B) is a deaf-blindness disorder, caused by mutations in the MYO7A gene, which encodes the heavy chain of an unconventional actin-based motor protein. Here, we examined the two retinal isoforms of MYO7A, IF1 and IF2. We compared 3D models of the two isoforms and noted that the 38-amino acid region that is present in IF1 but absent from IF2 affects the C lobe of the FERM1 domain and the opening of a cleft in this potentially important protein binding domain. Expression of each of the two isoforms of human MYO7A and pig and mouse Myo7a was detected in the RPE and neural retina. Quantification by qPCR showed that the expression of IF2 was typically âˆ¼ 7-fold greater than that of IF1. We discuss the implications of these findings for any USH1B gene therapy strategy. Given the current incomplete knowledge of the functions of each isoform, both isoforms should be considered for targeting both the RPE and the neural retina in gene augmentation therapies.


Assuntos
Síndromes de Usher , Humanos , Camundongos , Animais , Suínos , Síndromes de Usher/genética , Síndromes de Usher/terapia , Síndromes de Usher/metabolismo , Miosina VIIa/genética , Miosina VIIa/metabolismo , Retina/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Mutação , Terapia Genética
7.
Adv Exp Med Biol ; 1415: 515-519, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37440080

RESUMO

Retinal pigment epithelium (RPE) cells daily ingest the tips of the photoreceptor outer segments (POSs), with phagosome number varying throughout a 24-h cycle. A major focus in the literature has been on a peak in phagosome concentration shortly after lights-on. Moreover, this peak has frequently been inferred to represent a peak in POS tip ingestion. Here, we have reviewed old and new literature on the daily cycle of phagosome number in the RPE and conclude that there is more variation in the timing of phagosome concentration peaks than is currently acknowledged. We also discuss that phagosome quantity is affected by the rate of phagosome degradation as well as the rate of ingestion; given that phagosome half-life may not be constant throughout the daily cycle, maximal POS ingestion may not necessarily coincide with a peak in phagosome concentration.


Assuntos
Fagocitose , Epitélio Pigmentado da Retina , Fagossomos/metabolismo , Neurônios , Células Cultivadas , Segmento Externo das Células Fotorreceptoras da Retina
8.
J Neurosci ; 43(30): 5468-5482, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37414561

RESUMO

The rod photoreceptor synapse is the first synapse of dim-light vision and one of the most complex in the mammalian CNS. The components of its unique structure, a presynaptic ribbon and a single synaptic invagination enclosing several postsynaptic processes, have been identified, but disagreements about their organization remain. Here, we have used EM tomography to generate high-resolution images of 3-D volumes of the rod synapse from the female domestic cat. We have resolved the synaptic ribbon as a single structure, with a single arciform density, indicating the presence of one long site of transmitter release. The organization of the postsynaptic processes, which has been difficult to resolve with past methods, appears as a tetrad arrangement of two horizontal cell and two rod bipolar cell processes. Retinal detachment severely disrupts this organization. After 7 d, EM tomography reveals withdrawal of rod bipolar dendrites from most spherules; fragmentation of synaptic ribbons, which lose their tight association with the presynaptic membrane; and loss of the highly branched telodendria of the horizontal cell axon terminals. After detachment, the hilus, the opening through which postsynaptic processes enter the invagination, enlarges, exposing the normally sequestered environment within the invagination to the extracellular space of the outer plexiform layer. Our use of EM tomography provides the most accurate description to date of the complex rod synapse and details changes it undergoes during outer segment degeneration. These changes would be expected to disrupt the flow of information in the rod pathway.SIGNIFICANCE STATEMENT Ribbon-type synapses transmit the first electrical signals of vision and hearing. Despite their crucial role in sensory physiology, the three-dimensional ultrastructure of these synapses, especially the complex organization of the rod photoreceptor synapse, is not well understood. We used EM tomography to obtain 3-D imaging at nanoscale resolution to help resolve the organization of rod synapses in normal and detached retinas. This approach has enabled us to show that in the normal retina a single ribbon and arciform density oppose a tetrad of postsynaptic processes. In addition, it enabled us to provide a 3-D perspective of the ultrastructural changes that occur in response to retinal detachment.


Assuntos
Descolamento Retiniano , Feminino , Animais , Gatos , Microscopia Eletrônica , Sinapses/metabolismo , Retina/ultraestrutura , Células Bipolares da Retina , Células Fotorreceptoras Retinianas Bastonetes/ultraestrutura , Mamíferos
9.
Int J Biol Macromol ; 241: 124510, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37080412

RESUMO

Cartilage repair after a trauma or a degenerative disease like osteoarthritis (OA) continues to be a big challenge in current medicine due to the limited self-regenerative capacity of the articular cartilage tissues. To overcome the current limitations, tissue engineering and regenerative medicine (TERM) and adjacent areas have focused their efforts on new therapeutical procedures and materials capable of restoring normal tissue functionalities through polymeric scaffolding and stem cell engineering approaches. For this, the sustainable exploration of marine origin materials has emerged in the last years as a natural alternative to mammal sources, benefiting from their biological properties (e.g., biocompatibility, biodegradability, no toxicity, among others) for the development of several types of scaffolds. In this study, marine collagen(jCOL)-chitosan(sCHT)-fucoidan(aFUC)/chondroitin sulfate(aCS) were cryo-processed (-20 °C, -80 °C, and -196 °C) and a chemical-free crosslinking approach was explored to establish cohesive and stable cryogel materials. The cryogels were intensively characterized to assess their oscillatory behavior, thermal structural stability, thixotropic properties (around 45 % for the best formulations), injectability, and surface structural organization. Additionally, the cryogels demonstrate an interesting microenvironment in in vitro studies using human adipose-derived stem cells (hASCs), supporting their viability and proliferation. In both physic-chemical and in vitro studies, the systems that contain fucoidan in their formulations, i.e., C1 (jCOL, sCHT, aFUC) and C3 (jCOL, sCHT, aFUC, aCS), submitted at -80 °C, are those that demonstrated most promising results for future application in articular cartilage tissues.


Assuntos
Cartilagem Articular , Quitosana , Animais , Humanos , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/metabolismo , Engenharia Tecidual/métodos , Sulfatos de Condroitina/química , Quitosana/química , Tecidos Suporte/química , Criogéis/química , Cartilagem Articular/metabolismo , Colágeno/metabolismo , Mamíferos
10.
Curr Biol ; 33(8): 1513-1522.e4, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-36977418

RESUMO

Most defects causing retinal degeneration in retinitis pigmentosa (RP) are rod-specific mutations, but the subsequent degeneration of cones, which produces loss of daylight vision and high-acuity perception, is the most debilitating feature of the disease. To understand better why cones degenerate and how cone vision might be restored, we have made the first single-cell recordings of light responses from degenerating cones and retinal interneurons after most rods have died and cones have lost their outer-segment disk membranes and synaptic pedicles. We show that degenerating cones have functional cyclic-nucleotide-gated channels and can continue to give light responses, apparently produced by opsin localized either to small areas of organized membrane near the ciliary axoneme or distributed throughout the inner segment. Light responses of second-order horizontal and bipolar cells are less sensitive but otherwise resemble those of normal retina. Furthermore, retinal output as reflected in responses of ganglion cells is less sensitive but maintains spatiotemporal receptive fields at cone-mediated light levels. Together, these findings show that cones and their retinal pathways can remain functional even as degeneration is progressing, an encouraging result for future research aimed at enhancing the light sensitivity of residual cones to restore vision in patients with genetically inherited retinal degeneration.


Assuntos
Visão de Cores , Degeneração Retiniana , Retinite Pigmentosa , Humanos , Degeneração Retiniana/metabolismo , Células Fotorreceptoras Retinianas Cones/fisiologia , Retina/metabolismo , Retinite Pigmentosa/genética , Retinite Pigmentosa/metabolismo
11.
Gels ; 9(3)2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36975696

RESUMO

The self-repair capacity of human tissue is limited, motivating the arising of tissue engineering (TE) in building temporary scaffolds that envisage the regeneration of human tissues, including articular cartilage. However, despite the large number of preclinical data available, current therapies are not yet capable of fully restoring the entire healthy structure and function on this tissue when significantly damaged. For this reason, new biomaterial approaches are needed, and the present work proposes the development and characterization of innovative polymeric membranes formed by blending marine origin polymers, in a chemical free cross-linking approach, as biomaterials for tissue regeneration. The results confirmed the production of polyelectrolyte complexes molded as membranes, with structural stability resulting from natural intermolecular interactions between the marine biopolymers collagen, chitosan and fucoidan. Furthermore, the polymeric membranes presented adequate swelling ability without compromising cohesiveness (between 300 and 600%), appropriate surface properties, revealing mechanical properties similar to native articular cartilage. From the different formulations studied, the ones performing better were the ones produced with 3 % shark collagen, 3% chitosan and 10% fucoidan, as well as with 5% jellyfish collagen, 3% shark collagen, 3% chitosan and 10% fucoidan. Overall, the novel marine polymeric membranes demonstrated to have promising chemical, and physical properties for tissue engineering approaches, namely as thin biomaterial that can be applied over the damaged articular cartilage aiming its regeneration.

12.
J Neurosci ; 43(15): 2653-2664, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-36878726

RESUMO

The photoreceptor outer segment (OS) is the phototransductive organelle in the vertebrate retina. OS tips are regularly ingested and degraded by the adjacent retinal pigment epithelium (RPE), offsetting the addition of new disk membrane at the base of the OS. This catabolic role of the RPE is essential for photoreceptor health, with defects in ingestion or degradation underlying different forms of retinal degeneration and blindness. Although proteins required for OS tip ingestion have been identified, spatiotemporal analysis of the ingestion process in live RPE cells is lacking; hence, the literature reflects no common understanding of the cellular mechanisms that affect ingestion. We imaged live RPE cells from mice (both sexes) to elucidate the ingestion events in real time. Our imaging revealed roles for f-actin dynamics and specific dynamic localizations of two BAR (Bin-Amphiphysin-Rvs) proteins, FBP17 and AMPH1-BAR, in shaping the RPE apical membrane as it surrounds the OS tip. Completion of ingestion was observed to occur by scission of the OS tip from the remainder of the OS, with a transient concentration of f-actin forming around the site of imminent scission. Actin dynamics were also required for regulating the size of the ingested OS tip, and the time course of the overall ingestion process. The size of the ingested tip is consistent with the term "phagocytosis." However, phagocytosis usually refers to engulfment of an entire particle or cell, whereas our observations of OS tip scission indicate a process that is more specifically described as "trogocytosis," in which one cell "nibbles" another cell.SIGNIFICANCE STATEMENT The ingestion of the photoreceptor outer segment (OS) tips by the retinal pigment epithelium (RPE) is a dynamic cellular process that has fascinated scientists for 60 years. Yet its molecular mechanisms had not been addressed in living cells. We developed a live-cell imaging approach to investigate OS tip ingestion, and focused on the dynamic participation of actin filaments and membrane-shaping BAR proteins. We observed scission of OS tips for the first time, and were able to monitor local changes in protein concentration preceding, during, and following scission. Our approach revealed that actin filaments were concentrated at the site of OS scission and were required for regulating the size of the ingested OS tip and the time course of the ingestion process.


Assuntos
Actinas , Epitélio Pigmentado da Retina , Masculino , Feminino , Camundongos , Animais , Epitélio Pigmentado da Retina/metabolismo , Actinas/metabolismo , Fagocitose/fisiologia , Citoesqueleto de Actina/metabolismo , Ingestão de Alimentos
14.
Biomater Adv ; 137: 212843, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35929272

RESUMO

In the recent decade, marine origin products have been growingly studied as building blocks complying with the constant demand of the biomedical sector regarding the development of new devices for Tissue Engineering and Regenerative Medicine (TERM). In this work, several combinations of marine collagen-chitosan-fucoidan hydrogel were formed using a newly developed eco-friendly compressive and absorption methodology to produce hydrogels (CAMPH), which consists of compacting the biopolymers solution while removing the excess of water. The hydrogel formulations were prepared by blending solutions of 5% collagen from jellyfish and/or 3% collagen from blue shark skin, with solutions of 3% chitosan from squid pens and solutions of 10% fucoidan from brown algae, at different ratios. The biopolymer physico-chemical characterization comprised Amino Acid analysis, ATR-FTIR, CD, SDS-PAGE, ICP, XRD, and the results suggested the shark/jellyfish collagen(s) conserved the triple helical structure and had similarities with type I and type II collagen, respectively. The studied collagens also contain a denaturation temperature of around 30-32 °C and a molecular weight between 120 and 125 kDa. Additionally, the hydrogel properties were determined by rheology, water uptake ability, degradation rate, and SEM, and the results showed that all formulations had interesting mechanical (strong viscoelastic character) and structural stability properties, with a significant positive highlight in the formulation of H3 (blending all biopolymers, i.e., 5% collagen from jellyfish, 3% collagen from skin shark, 3% chitosan and 10% of fucoidan) in the degradation test, that shows a mass loss around 18% over the 30 days, while the H1 and H2, present a mass loss of around 35% and 44%, respectively. Additionally, the in vitro cellular assessments using chondrocyte cells (ATDC5) in encapsulated state revealed, for all hydrogel formulations, a non-cytotoxic behavior. Furthermore, Live/Dead assay and Phalloidin/DAPI staining, to assess the cytoskeletal organization, proved that the hydrogels can provide a suitable microenvironment for cell adhesion, viability, and proliferation, after being encapsulated. Overall, the results show that all marine collagen (jellyfish/shark)-chitosan-fucoidan hydrogel formulations provide a good structural architecture and microenvironment, highlighting the H3 biomaterial due to containing more polymers in their composition, making it suitable for biomedical articular cartilage therapies.


Assuntos
Cartilagem Articular , Quitosana , Materiais Biocompatíveis/farmacologia , Cartilagem Articular/química , Quitosana/química , Colágeno/farmacologia , Hidrogéis/farmacologia , Engenharia Tecidual/métodos , Água/metabolismo
15.
J Biol Chem ; 298(9): 102286, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35868562

RESUMO

In the mammalian retina, a metabolic ecosystem exists in which photoreceptors acquire glucose from the choriocapillaris with the help of the retinal pigment epithelium (RPE). While the photoreceptor cells are primarily glycolytic, exhibiting Warburg-like metabolism, the RPE is reliant on mitochondrial respiration. However, the ways in which mitochondrial metabolism affect RPE cellular functions are not clear. We first used the human RPE cell line, ARPE-19, to examine mitochondrial metabolism in the context of cellular differentiation. We show that nicotinamide induced rapid differentiation of ARPE-19 cells, which was reversed by removal of supplemental nicotinamide. During the nicotinamide-induced differentiation, we observed using quantitative PCR, Western blotting, electron microscopy, and metabolic respiration and tracing assays that (1) mitochondrial gene and protein expression increased, (2) mitochondria became larger with more tightly folded cristae, and (3) mitochondrial metabolism was enhanced. In addition, we show that primary cultures of human fetal RPE cells responded similarly in the presence of nicotinamide. Furthermore, disruption of mitochondrial oxidation of pyruvate attenuated the nicotinamide-induced differentiation of the RPE cells. Together, our results demonstrate a remarkable effect of nicotinamide on RPE metabolism. We also identify mitochondrial respiration as a key contributor to the differentiated state of the RPE and thus to many of the RPE functions that are essential for retinal health and photoreception.


Assuntos
Diferenciação Celular , Mitocôndrias , Niacinamida , Epitélio Pigmentado da Retina , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Glucose/metabolismo , Humanos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Niacinamida/farmacologia , Ácido Pirúvico/metabolismo , Epitélio Pigmentado da Retina/citologia , Epitélio Pigmentado da Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/metabolismo
16.
Nurs Educ Perspect ; 43(5): 303-305, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35792635

RESUMO

ABSTRACT: The experiences of graduate nursing students during the COVID-19 pandemic necessitate a trauma-informed approach to education. Three hundred graduate nursing students responded to a discussion assignment in a doctoral-level health care policy course. Thematic analysis identified common themes of fear, anxiety, frustration, and exhaustion ( n = 93). Conflict and strain were identified in relation to all major roles (provider, student, and family member), ultimately creating physical and mental barriers to fulfilling each of the roles. Curricular standards must maintain rigor while incorporating flexibility into design standards to assist students when faced with trauma or crisis.


Assuntos
COVID-19 , Educação de Pós-Graduação em Enfermagem , Estudantes de Enfermagem , Humanos , Pandemias
17.
Exp Eye Res ; 222: 109170, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35835183

RESUMO

Age-related macular degeneration (AMD) is a disease that affects the macula - the central part of the retina. It is a leading cause of irreversible vision loss in the elderly. AMD onset is marked by the presence of lipid- and protein-rich extracellular deposits beneath the retinal pigment epithelium (RPE), a monolayer of polarized, pigmented epithelial cells located between the photoreceptors and the choroidal blood supply. Progression of AMD to the late nonexudative "dry" stage of AMD, also called geographic atrophy, is linked to progressive loss of areas of the RPE, photoreceptors, and underlying choriocapillaris leading to a severe decline in patients' vision. Differential susceptibility of macular RPE in AMD and the lack of an anatomical macula in most lab animal models has promoted the use of in vitro models of the RPE. In addition, the need for high throughput platforms to test potential therapies has driven the creation and characterization of in vitro model systems that recapitulate morphologic and functional abnormalities associated with human AMD. These models range from spontaneously formed cell line ARPE19, immortalized cell lines such as hTERT-RPE1, RPE-J, and D407, to primary human (fetal or adult) or animal (mouse and pig) RPE cells, and embryonic and induced pluripotent stem cell (iPSC) derived RPE. Hallmark RPE phenotypes, such as cobblestone morphology, pigmentation, and polarization, vary significantly betweendifferent models and culture conditions used in different labs, which would directly impact their usability for investigating different aspects of AMD biology. Here the AMD Disease Models task group of the Ryan Initiative for Macular Research (RIMR) provides a summary of several currently used in vitro RPE models, historical aspects of their development, RPE phenotypes that are attainable in these models, their ability to model different aspects of AMD pathophysiology, and pros/cons for their use in the RPE and AMD fields. In addition, due to the burgeoning use of iPSC derived RPE cells, the critical need for developing standards for differentiating and rigorously characterizing RPE cell appearance, morphology, and function are discussed.


Assuntos
Atrofia Geográfica , Células-Tronco Pluripotentes Induzidas , Degeneração Macular , Adulto , Idoso , Animais , Técnicas de Cultura de Células , Atrofia Geográfica/patologia , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Degeneração Macular/metabolismo , Camundongos , Epitélio Pigmentado da Retina/metabolismo , Suínos
18.
Polymers (Basel) ; 14(10)2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35631910

RESUMO

Marine origin polymers represent a sustainable and natural alternative to mammal counterparts regarding the biomedical application due to their similarities with proteins and polysaccharides present in extracellular matrix (ECM) in humans and can reduce the risks associated with zoonosis and overcoming social- and religious-related constraints. In particular, collagen-based biomaterials have been widely explored in tissue engineering scaffolding applications, where cryogels are of particular interest as low temperature avoids protein denaturation. However, little is known about the influence of the parameters regarding their behavior, i.e., how they can influence each other toward improving their physical and chemical properties. Factorial design of experiments (DoE) and response surface methodology (RSM) emerge as tools to overcome these difficulties, which are statistical tools to find the most influential parameter and optimize processes. In this work, we hypothesized that a design of experiments (DoE) model would be able to support the optimization of the collagen-chitosan-fucoidan cryogel manufacturing. Therefore, the parameters temperature (A), collagen concentration (B), and fucoidan concentration (C) were carefully considered to be applied to the Box-Behnken design (three factors and three levels). Data obtained on rheological oscillatory measurements, as well as on the evaluation of antioxidant concentration and adenosine triphosphate (ATP) concentration, showed that fucoidan concentration could significantly influence collagen-chitosan-fucoidan cryogel formation, creating a stable internal polymeric network promoted by ionic crosslinking bonds. Additionally, the effect of temperature significantly contributed to rheological oscillatory properties. Overall, the condition that allowed us to have better results, from an optimization point of view according to the DoE, were the gels produced at -80 °C and composed of 5% of collagen, 3% of chitosan, and 10% fucoidan. Therefore, the proposed DoE model was considered suitable for predicting the best parameter combinations needed to develop these cryogels.

19.
Cell Death Differ ; 29(11): 2288-2302, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35606410

RESUMO

Colorectal cancers (CRCs) often display histological features indicative of aberrant differentiation but the molecular underpinnings of this trait and whether it directly drives disease progression is unclear. Here, we identify co-ordinate epigenetic inactivation of two epithelial-specific transcription factors, EHF and CDX1, as a mechanism driving differentiation loss in CRCs. Re-expression of EHF and CDX1 in poorly-differentiated CRC cells induced extensive chromatin remodelling, transcriptional re-programming, and differentiation along the enterocytic lineage, leading to reduced growth and metastasis. Strikingly, EHF and CDX1 were also able to reprogramme non-colonic epithelial cells to express colonic differentiation markers. By contrast, inactivation of EHF and CDX1 in well-differentiated CRC cells triggered tumour de-differentiation. Mechanistically, we demonstrate that EHF physically interacts with CDX1 via its PNT domain, and that these transcription factors co-operatively drive transcription of the colonic differentiation marker, VIL1. Compound genetic deletion of Ehf and Cdx1 in the mouse colon disrupted normal colonic differentiation and significantly enhanced colorectal tumour progression. These findings thus reveal a novel mechanism driving epithelial de-differentiation and tumour progression in CRC.


Assuntos
Neoplasias Colorretais , Fatores de Transcrição , Animais , Camundongos , Neoplasias Colorretais/genética , Epigênese Genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
20.
Occup Med (Lond) ; 72(6): 420-423, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35468208

RESUMO

Silicosis is a progressive and irreversible fibrotic occupational lung disease caused by inhalation of respirable crystalline silica (RCS). Recently, outbreaks have been reported in industries involving direct work with high silica-containing materials, such as artificial stone. Here, we describe an unexpected diagnosis made in an asymptomatic 33-year-old female worker employed for 4 years at a quarry for rhyodacite and rhyolite which contain 70% silicon dioxide. Chest computed tomography demonstrated small nodules in the upper lobes and larger ill-defined areas of opacity. Bronchoalveolar lavage revealed fine birefringent material within the cytoplasm of alveolar macrophages, representing silica. Transbronchial biopsies of lung parenchyma and endobronchial ultrasound-guided transbronchial needle aspiration of mediastinal lymph nodes did not reveal features of sarcoidosis, tuberculosis, or malignancy. As such, a diagnosis of accelerated silicosis was confirmed and represents the first reported case in a female worker at a rhyodacite and rhyolite quarry.


Assuntos
Exposição Ocupacional , Silicose , Adulto , Feminino , Humanos , Linfonodos , Mediastino/patologia , Exposição Ocupacional/efeitos adversos , Exposição Ocupacional/análise , Dióxido de Silício/efeitos adversos , Silicose/complicações , Silicose/diagnóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...